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ABSTRACT 

Most clustering algorithms in fMRI analysis implicitly 
require some nontrivial assumption on data structure. Due to 
arbitrary distribution of fMRI time series in the temporal 
domain, such analysis may mislead and limit the detector’s 
performance. In this work, the authors exploited the 
application of an information-based clustering algorithm 
(Iclust) which could avoid these assumptions and provide 
many other benefits, such as no cluster shape restriction, no 
need of a prior definition about similarity measure, and the 
ability of capturing both linear and nonlinear dependence. 
Results from both artificial and real fMRI data indicated 
that the proposed framework could achieve better spatio-
temporal accuracy, and enabled the exploration of fine 
functional distinction of the human visual system in 
accordance with its well-known anatomy organizations.  

Index Terms— Pattern clustering methods, Magnetic 
resonance imaging 

1. INTRODUCTION 

Functional magnetic resonance imaging with high temporal 
and spatial resolution represents a powerful technique for 
visualizing rapid and fine activation patterns of the human 
brain. However, the low signal-to-noise ratio (SNR) and 
confounding sources of artifacts in the fMRI time sequences, 
make the detection of brain activation a challenging task. 
Recently, clustering methods are gaining increasing 
attentions as they aim at separating time series into several 
patterns according to their similarities. Well known 
members of this category are Fuzzy C-means (FCM) [1], 
hierarchical clustering [2], Kohonen clustering neural 
network [3], etc. 
Indeed, several clustering methods are based upon the 
controversial postulate that data series conform to certain 
shapes (structure assumption problem). For example, single-
linkage hierarchical clustering tends to produce “long 
chained” clusters [2]. The FCM groups data into scatter 
with a ‘hyper-spherical’ shape if adopting the Euclidean 
distance as similarity measure [1]. These methods only 
provide high-quality results when the data scatter in the 

assumed shapes; while in a general case of more complex 
clusters with arbitrary shapes, their performance 
degenerates markedly. In addition, the central question in 
clustering is whether an essentially unsupervised analysis of 
datasets can recover categories that have ‘meaning’ [4]. 
Therefore, the question of how to construct an accurate 
model obviously is quite involved, raising further issues that 
are often addressed arbitrarily before the cluster analysis 
begins [4].  
As mentioned above, the literature on clustering in fMRI 
data analysis is vast. Therefore, the primary aim in this 
paper was not limited to suggest yet another clustering 
algorithm, but rather to focus on questions about the 
formulation of clustering problems in fMRI data analysis 
which may provide plausible methods to these concerns 
(such as cluster validity and parameterization selection). To 
address this question, a novel information-based clustering 
method originally proposed by Slonim et al. [4] was 
introduced. In this framework, the formulation of clustering 
solution falls on the search of a tradeoff between 
maximizing the mean similarity of elements within a cluster 
and minimizing the complexity of the description provided 
by cluster membership. In a systematic manner, the results 
obtained by this new approach were compared and 
evaluated with classical general linear model analysis (GLM) 
and model-free schemes such as FCM and independent 
component analysis (ICA).  

2. MATERIALS AND METHODS 

2.1. Stimulated Dataset Generation

To simulate the real-world fMRI data and to get concrete 
comparison of performance, the baseline image (29th slice) 
was selected from the real auditory fMRI dataset from 
Wellcome Cognitive Neurology at University College 
London, and simulated activation time-series were added to 
the baseline voxels in three artificial activation subregions 
(spatial pattern) shown in Fig. 1(a). The simulated 
activation responses were obtained by convolving a 
stimulation pattern with the HRF as shown in Fig. 1(b). 
Then an additive white Gaussian noise was added to all 
voxels with intensities proportional to the baseline voxel. 
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SNR was defined as the ratio of mean signal over the noise 
standard deviation.  

Fig. 1 Spatial pattern of activation in the simulated data. (a) 
fMRI image with three ROIs used as the basis for 
generating assumed active voxels; (b) Artificially temporal 
response and stimulation reference of three subregions. 

2.2. In Vivo fMRI Dataset 

In vivo experiments were carried out with a 3.0 Tesla Signa 
(GE) MR whole body Scanner. Nine subjects took part in 
this study after they provided informed consent approved by 
a local human study review board. A checkerboard pattern 
flashing for one second at 8Hz was used as the visual 
stimulus. As baseline condition, a central red dot in front of 
the same isoluminant background was presented for 30s 
between stimuli. During the task, participants were 
instructed to focus their gaze on the center of the screen and 
to minimize blinking whilst the checkerboard was presented. 
Twelve stimuli were presented per run, and took 
approximately 6 min. 
Functional images of 32 slices (spanning the cerebral cortex) 
were collected in a sagittal orientation parallel to the AC-PC 
plane with 4 mm slice thickness (no gaps) using a single-
shot gradient-recalled echo planar imaging (EPI) sequence 
(TE = 27 ms, TR = 2000ms, flip angle = 85°, matrix size = 
64 x 64, FOV: 256mm x 256mm, giving an in-plane 
resolution: 4 x 4 mm).   

2.3. Procedure of Data Analysis 

Data preprocessing were performed with the Statistical 
Parametric Mapping SPM2 software package (Wellcome 
Department of Imaging Neuroscience, London UK). Prior to 
the time series analysis, the data were processed to remove 
low-frequency signal changes and motion-related artifacts. 
Data preprocessing was spatially realigned, un-warped, 
slice-timed, normalized to the MNI space, and smoothed 
with an isotropic 6-mm FWHM Gaussian kernel, with 
resulting voxels size of 3 3 3mm mm mm . Because the only 
interest laid on the signal variation of functional MR images 

rather than their baseline signal intensities, the mean value 
of each voxel signal was subtracted by its mean value over 
the entire image sequence to eliminate the dependency of 
baseline intensity level.  

3. MATHEMATICAL FRAMEWORK 

3.1. Mutual information as similarity measure 

Mutual information is a well-established concept to measure 
relatedness between a pair of variables independent of 
assumptions about the form of the underlying probability 
distributions. In this work, we are trying to measure the 
relation between activation patterns of voxels across a 
variety of time points 1, 2,...,t N . For voxel i  and j , we 
can define the joint probability density of their pattern levels  
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becoming smooth as N . Given the above joint 
distributions, their relations measured by mutual 
information come from the following 
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Although (2) become smooth as N , one can still 
obtain reliable estimates by applying the ‘direct’ estimation 
method originally developed in the neural coding analysis 
[5]. 

3.2. Optimal clustering solution 

Iclust attempts to formulate the clustering problem as a 
tradeoff between maximizing the mean similarity of 
elements within a cluster and minimizing the complexity of 
the description provided by cluster membership. Given the 
similarity measure ( , )s i j expressed by mutual information, 
optimal clustering is a probabilistic assignment to clusters C 
according to ( / )P C i  to maximize the object function 
                               ( ; )F s TI C i                                  (3)

Where s defines the mean similarity of elements chosen at 
random out of each cluster, 
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and ( ; )I C i enbodies the identity information of elements in 
certain cluster, 
         ( ; ) ( / ) ( ) log ( / ) / ( )

C i
I C i P C i P i P C i P C            (5)

the Lagrange multiplier T enforces the constraint on ( ; )I C i .
In general, it is not possible to find an explicit solution for 

( / )P C i  that maximizes F . However, if we assume that F
is differentiable with respect to the variable ( / )P C i , self-
consistent equations that any optimal solution must obey: 
     ( / ) ( ) / ( ; ) exp 1/ [2 ( ; ) ( )]P C i P C Z i T T s C i s C         (6)
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Where ( ; )Z i T is a normalization constant and ( ; )s C i is the 
expected similarity between i and a member of cluster C ,

                        
1
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s C i P i C s i i                           (7)

and ( )s C is the average similarity among pairs chosen 
independently out of the cluster C indicated in (4).                      
Although (6) is an implicit set of equations, we can turn this 
self-consistency condition into an iterative algorithm to 
search an explicit numerical solution for ( / )P C i , yielding a 
(perhaps local) maximum of F . If the solution of algorithm 
at the thm  iteration can be denoted as )/()( iCP m , at the 

1stm iteration, the update step should be followed by: 
( 1) ( ) ( ) ( )( / ) ( ) exp 1/ [2 ( ; ) ( )]m m m mP C i P C T s C i s C (8) 

In principle we repeat this procedure for different 
initializations and choose the prefered solution that 
maximizes ( ; )F s TI C i . In some extreme cases, the 
above algorithm might produce a non–monotonic behavior 
in F . However, for the regime

1 2, 1 2max 2 ( , )i iT s i i , it is 
possible to prove this convergence analytically [6]. 

4. RESULTS 

4.1. On Simulated Dataset 

In order to alleviate the computation burden in clustering, 
the researchers firstly reduced the number of voxels using t-
test between response and stimulus. In this work, we 
targeted to find four clusters: three clusters covering three 
types of activated voxels respectively, and the fourth one 
corresponding to non-activated voxels. For Iclust, intensive 
analysis emphasized the parameters pair { CN = 4, T = 1/25} 
for which the saturation of s was relatively clear. For GLM, 
the significance threshold was set to P < 0.0001. For FCM, 
the number of clusters was set to four, and ICA was 
constrained to generate three independent components. Fig. 
2(a)-(d) show the dectection results from Iclust, GLM, ICA, 
and FCM, when SNR was set to 1.1. We could see that 
activated components detected by proposed Iclust were 
intactly identified and sufficiently separated from strong 
noise with accurate spatial distribution, while other 
competing methods detected the activation regions with 
some misidentifications and contaminating noise.  

Fig. 2 Detection results of phantom data from (a) Iclust (b) 
GLM (c) ICA (d) FCM.  

To quantitatively assess the performance of these methods 
and distinguish between effect-region and pure-noise voxels, 
the authors estimated the sensitivity and specificity when 
SNR increased from 0.4 to 2.0 (Fig. 3). According to Fig. 3, 
Iclust achieved both highest sensitivity and specificity at 
different SNR levels with a significant margin, compared to 
other alternatives. As SNR increased, Iclust boosted quite 
quickly and greatly surpassed other competing methods. 

Fig. 3 Illustration of sensitivity and specificity performance 
of each method for different SNRs ranging from 0.4 to 2.  
(a) Sensitivity; (b)Specificity. 

4.2. In Vivo Dataset 

In this study, we analyzed the optimal solution with 
20,1/ 25Nc T for Iclust that obtained the highest 

value s , where 89% voxels had nearly deterministic 
assignments to one of the clusters. After 50 different 
random initializations, the local maxima of F was 
determined. As to ICA and FCM, the number of clusters 
was 30, and the significance threshold in the GLM was P < 
0.001. Fig. 4 (a)-(d) show that activated voxels, detected by 
different methods on the 19th slice of visual fMRI datasets, 
cover the primary visual cortex when they were 
superimposed on the accompanied structural data 
thresholded at z = 3 (P < 0.001, uncorrected). Specifically, 
four component maps of Iclust, had highly correlated time 
course with the experimental paradigm, though presented 
spatially different distributions. For convenient comparation 
with other methods, deliberate combination of these four 
maps into one was carried out, results shown in Fig. 4(a) 
(the four component maps would be discussed respectively 
in later paragraph). The “interesting” clusters by Iclust were 
highly evaluated by both robustness and stronger correlation 
with the stimulus (averaged r = 0.76). Though anatomically 
connected with visual cortical areas, spatial activation 
patterns detected by other methods, failed to present any 
significant activation in relevance with the stimulation 
paradigm, which pushed itself into hard interpretation. 
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Fig.4 Cluster plot obtained from a representative subject 
detected by (a) Iclust (b) GLM (c) ICA (d) FCM from a 
visual task. Activation detection was done at the specificity 
level of 99.9% (P < 0.001, uncorrected). The average 
(normalized) time-courses were also reported with colors 
(temporal time series shown in solid line and reference 
function in dashed line). 
For Iclust, four clusters had highly correlated time courses 
with the experimental paradigm. For clear presentation, 
consolidated map was color-coded in Fig. 5 (a) according to 
their different spatial layout, with respective clusters and 
corresponding correlation coefficients  shown in Fig. 5 (b)-
(e). These evidence demonstrated that the visual cortex 
actually consisted of subregions behaving differently, but 
other methods limited the extent, to which significantly 
activated voxels could be interpreted in terms of their 
specific functional involvement. Such subvision presented 
in this study could be interpreted by both anatomical and 
functional studies: V1 is mainly involved in the initial 
encoding of a visual stimulus; V5/MT is known as motion-
sensitive regions; V2/3 represent a mediating area 
transmitting information between V1 and V5/MT consistent 
with neuroanatomical models of visual motion perception 
[7]. The anatomical layout and temporal profile indicated 
that this further separation was neurophysiologically 
meaningful, not an artificial splitting. 

Fig.5 Task-related clusters detected by the proposed method 
for a representative subject (P < 0.0005, uncorrected). 
Averaged time course (solid line) and reference function 
(dashed line) were also presented. (a) Composite map of the 
four clusters with color coding: yellow, the primary visual 
cotex V1 (BA 17); blue, the extrastriate visual cortex V2 
(BA 18); green, located in V3 (BA 19); red, located in 
V5/MT (BA 19 and BA 37). (b) - (e) activation location 
corresponding to the color-coded clusters. 

5. DISCUSSION AND CONCLUSION 

In summary, this study demonstrated the feasibility of a new 
attempt, and addressed limitation of potential assumptions 
of data structures involved in previous fMRI clustering 
analysis by means of the information-based clustering 
method. Two aspects made this application attractive: the 
reliable, tight clusters emerged both algorithmicly and 
statistically by capturing any type of dependencies, strongly 
nonlinear structures included; the intrinsical data 
substructure could be automatically discovered and 
presented in a fine separation of the neurocognitive 
processes involved in the visual task. Our results 
significantly demonstrated that not all voxels detected by 
conventional algorithms ought to be functionally 
homogeneous, and could be further divided into several 
units with neurophysiologically functional involvement, 
regarded as preliminary in nature and needed to be 
replicated in prospective research.  
This basic analytical framework was applied in 
demonstrating the functional subdivision of the human 
visual system, which generally displayed a high signal-to-
noise ratio (SNR) compared to other systems, such as 
neurocognitive system. In reference to our attempt, 
prospective research remains to be illustrated whether Iclust 
can produce equally encouraging performance in other 
cortical networks with lower SNRs. Apparently, the author 
would not argue the optimum of our choice of clustering 
pattern, regarding some well-defined criteria. Therefore, 
seeking the answers of how to define a relevant criterion 
and developing an optimal segmentation posed another 
challenge for further researches. 
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